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Abstract: In this paper, further results on the problem of the model structure validation for closed loop system identification 

are proposed. One probabilistic model uncertainty is derived from some statistical properties of the parameter estimation. The 

uncertainties bound of the model parameter is constructed in the probability sense by using the inner product form of the 

asymptotic covariance matrix. Further a new technique for estimating bias and variance contributions to the model error is 

suggested. One bound described as an inequality corresponds to a condition on the model error. Due to this proposed bound, 

model structure validation process can be transformed to verify whether the model error obeys this inequality. Finally the 

simulation example results confirm the identification theoretical results. 
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1. Introduction 

The automatic control system includes two basic structures: 

one open loop and other closed loop. As there does not exist 

any feedback in open loop structure, so the plant output 

affects the input less. And in closed open structure, the error 

signals coming from the input and feedback output generate 

one correction action and make the output converge to some 

given value. The essence of closed loop system is to decrease 

the error by using the negative feedback function, and correct 

the deviation from the given value automatically. As the 

closed loop structure can suppress the errors coming from the 

internal or external disturbances, so for many industrial 

production processes, safety and production restrictions are 

strong reasons for not allowing control experiments in 

open-loop and the closed loop is most needed in all of our 

engineering. 

Generally two strategies are used to design the controller 

in closed loop, i.e. model based design and direct data driven 

design. The primary step of model based design is to 

construct the plant model and apply this mathematical model 

in the process of designing controller. Conversely in the 

direct data driven method, the modeling process is not 

needed and the controller is directly designed by using the 

input-output data. Now as the first model based design 

strategy is more applied, so we do much research on system 

identification to identify the plant model. The whole theory 

of system identification can be divided into four categories, 

i.e. experiment design, model structure selection, model 

parameter identification and model structure validation test. 

Further the more research is concerned on the first three 

categories. To be the author's knowledge, the study on model 

structure validation under closed loop condition is very little. 

There are three common identification methods in closed 

loop identification, i.e. direct approach, indirect approach and 

joint input-output approach, where the feedback is neglected 

in direct approach and the plant model is identified directly 

using the input-output data. For the indirect approach, the 

feedback effect is considered and the input-output from the 

whole closed loop condition are used to identify the plant 

model. The joint input-output approach is very similar to 

indirect approach. In [1], three methods are presented to 

identify closed loop system. In [2], researches on the system 

identification theory are introduced in time domain. Similarly 

the frequency domain system identification is given in [3]. A 

new virtual closed loop method for closed loop identification 

is proposed in [4]. In [5], one projection algorithm is 

proposed on the basis of the prediction error recursive 

method. In [6], when many inputs exist in closed loop, 

whether can closed loop be identified with parts of the inputs 

controlled? The relationship between closed loop 
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identification and closed loop control are obtained in [7]. In 

[8], the linear matrix inequality is used to describe the 

problem of optimal input design in closed loop. Further the 

least cost identification experiment problem is analyzed in 

[9]. The power spectral of the input signal is considered to be 

an objective function and the accuracy of the parameter 

estimations is the constraints [10]. In [11], H infinity norm 

from robust control is introduced to be the objective function 

in the optimal input design problem. Based on the H infinity 

norm, the uncertainty between the identified model and 

nominal model is measured and the optimal input is chosen 

by minimizing this uncertainty [12]. The selection of the 

optimal input can also be determined from the point of 

asymptotic behavior about the parameter estimation [13]. The 

Persistent excitation input in closed loop is analyzed and we 

obtain some conditions about how to obtain persistent 

excitation [14]. Reference [15] considers how to apply closed 

loop identification into adaptive control so that bias and 

covariance terms are isolated separately. All above results 

hold when the number of the observed signals will 

convergent to infinity. 

There are little papers about model structure validation test 

now. Only in [2] and [15], model structure validation in open 

loop identification has been presented and the standard cross 

correlation test is proposed to test the confidence interval of 

the cross variance matrix between the prediction error and 

input from the probabilistic sense. Because of the simple 

structure of open loop, the process of deriving the covariance 

matrix is very easy. For model structure validation in 

engineering, the more effective strategy is to do one similar 

experiment again. After exciting the formal system with a 

group of new inputs, we compare if the actual output is 

consistent with the identified output. Although this test is 

simple, we can not analyze the accuracy and credibility of the 

identified model. In our paper [16], two probabilistic model 

uncertainties and optimum input filter are derived from some 

statistical properties of the parameter estimation. The 

probabilistic bounds and optimum input filter are based on an 

asymptotic normal distribution of the parameter estimator 

and its covariance matrix, which was estimated from sampled 

data. Using some results from our former paper [16], in this 

paper we continue to study the problem of model structure 

validation for closed loop system identification. So in order 

to reflect the identification accuracy, here we apply the 

statistical probability framework to derive the variance 

matrix of the unknown parameters firstly. This variance 

matrix is decomposed into one inter product form which is 

used to construct one uncertainty bound about the unknown 

parameter estimation. This uncertainty bound is called by 

confidence interval and it constitutes the guaranteed 

confidence region test with respect to the model parameter 

estimation under closed loop condition. Furthermore our aim 

is to find if the identified model is any good at describing the 

measured data and being a basis for latter controller design. 

To validate the effectively of the identified model, we 

construct one bound corresponding to the model error. This 

bound is proposed by an inequality condition, which 

connects the algebraic nature between the model error, the 

input signal, the model validation test quantity. Based on the 

bound and the proposed inequality condition, the problem of 

model structure validation for closed loop system is 

reformulated to verify if the absolute value of model error 

satisfies above inequality. Due to the closed loop system is 

considered here, some priori properties of closed loop system 

are provided to simplify the bound. 

2. Problem Description 

Consider the following actual closed loop system with 

output feedback (see Figure 1). 

 

Figure 1. Structure of the closed loop system. 
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where  is the true plant model;  is the noise 

filter, they are all linear time invariant transfer functions. 

 is a stable linear time invariant controller, here we 

assume this controller is priori known. The excited signal 

 and external disturbance  are assumed to be 

uncorrelated,  is a white noise with zero mean value 

and variance .  is a colored noise which can be 

obtained by passing white noise  through the noise 

filter .  and  are the input-output signals 

corresponding to plant model . 

Rewriting excited signal  as white noise  

passing through shaping filter .  is the power 

spectrum factor with stable non-minimal phase of excited 

signal .  is the delay operator, it means that 

. 

As , the power spectrum density of 

excited signal is given as 

      (1) 

In closed loop system structure, through some 

computations, we derive the transfer function form 

 

Continuing to do some computations and we get 

  (2) 

To simplify the analysis process, define the sensitivity 

function as. 

 

The output of closed loop system can be written as. 

 

As now our goal is not emphasized on identification 

method, but on the model structure validation, so the only 

simple direct approach is used to describe the basic ideas. 

3. Confidence Region Test of Model 

Parameter 

Introduce the unknown parameter vector in closed loop 

system, the parameterized form given by. 

 (3) 

where  denotes the unknown parameter vector, it exists in 

the parameterized plant model  and noise model

 respectively. The goal of closed loop identification 

is to identify the unknown parameter vector  from one 

given input-output data set , where

denotes the number of total observed data. 

According to (3), the prediction of  can be 

calculated as the one step ahead prediction. 

                     (4) 

Computing the one step ahead prediction error or residual, now it becomes. 

                         (5) 

In the standard prediction error algorithm, when using the 

input-output data  with the data 

number , the parameter vector is identified by. 
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Defining the asymptotic limit parameter estimate  as 

 

where  denotes the expectation operator. In the common 

identification process, assume that there always exists one 

true parameter vector  such that. 

 

This assumption shows that the identified model is 

contained in the considered model set. Based on some results 

from reference [2], we get the asymptotic matrix of the 

parameter estimate. 

               (7) 

where  denotes some inter product operator,  is the 

negative gradient of the predictor error, i.e it can be 

computed from: 

 

Next we give the calculation process of the negative 

gradient of the predictor error under closed loop condition 

below. As (7) is a basic formula in studying asymptotic 

analysis, we combine (3) and (4) to get. 

     (8) 

Substituting (8) into (5) and computing the partial 

derivative operations with respect to unknown parameter 

vector , and then we have 

   (9) 

where  denotes the partial derivative operation with 

respect to , and the delay operator  are all ignored to 

simply the derivations. 

Using the uncorrelated assumption between white noise

 and , i.e. it holds that 

 

Putting ahead one  in (9), and rewriting it as. 

  (10) 

where we use the parameterized sensitivity function 

 

As the following equality holds 

 

Rewriting (10) as the following matrix form 
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According to (7), the asymptotic covariance matrix is that 

  (12) 

where  and  are given as respectively 

 

On basis of (12), we have the asymptotic result 

 

It shows that the parameter estimator  will converge to 
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 and variance . 
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This asymptotic result can be rewritten in a quadratic form, 

and then we get one  distribution. 

          (13) 

where  is the number of degrees of freedom in the  

distribution, being equal to the dimension of the parameter 

vector. Equation (13) implies that the random variable  

satisfies one uncertainty bound. 

 (14) 

with  corresponding to a probability level  in 

distribution, But now in order to quantity the uncertainty on

 rather than on . For every realization of , it holds 

that 

 

It signifies that 

  (15) 

Equations (14) and (15) give the confidence intervals of 

unknown parameter estimator under closed loop condition. 

The probability level of the event  holds is at 

least . 

4. One Bound on Model Error 

A new technique for estimating bias and variance 

contributions to the model error is suggested in this section. 

Then model structure validation procedure gives a direct 

measurement of the model error of closed loop system, so the 

problem of model structure validation for closed loop system 

identification can be changed to test whether the model error 

obeys one inequality condition. Our problem is to figure out 

if identified model  is any good at describing the 

measured data and to give a statement how far away the 

model might be from a true description. 

As it is very useful to consider the prediction error or 

model residual, we could write model residual as follows 

based on equation (5). 
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When hypothesis testing problem  holds, then the 

residual signal  contains only two terms 

     (19) 

To give a detailed expression on model residual , 

we continue to rewrite it. 

 (20) 

In derivation process of equation (20), we use two known 

equalities 
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give one bound on  valid for each frequency . 

Before giving our main technical result of one bound on 

model error, we define some preliminaries as basis for our 

next derivation process. 

Then input-output data record corresponding to the whole 
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The procedure to obtain one bound on model error lies in 
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we see that if one identified model  can be used for 

the next control process, then the absolute value of model 

error must satisfy this inequality condition. 

Before giving an explicit proof about inequality condition 

(26), one important lemma from [2] is used here. 
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is proved. 
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 (32) 

where 

 

Before substituting equation (31) and (32) into (26), we 

should obtain the (1, 1) element of matrix . Observing 

the explicit structure of regression vector  in matrix 

, we have that. 

 

and 

  (33) 

The above derivation process corresponding to matrix 

is very easy, for example we only give one equality 

 

So for all , we have that. 

      (34) 

Substituting (33) into (32), we get that 
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Combing equation (31) and (35), the inequality condition 

in Theorem 1 can be simplified as follows 
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where variable  is changed to variable . 

From equation (36), the identification model  is 

useful on the condition that the model error  must 

obey one bound, which is described by inequality condition 

(36). So the problem of model structure validation for closed 

loop system identification is reformulated to ver. 

Ify if the absolute value of model error satisfies above 

inequality. 

5. Simulation Example 

To prove the model structure validation strategies under 

closed loop condition, we consider one simulation system. 
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response of closed loop. 

 

Figure 2. Confidence interval of amplitude in Bode plot. 

 

Figure 3. Confidence interval of phase in Bode plot. 

The whole output frequency response curves are showed in 

Figure 2, based on estimated model parameters. The red 

curve is the actual true amplitude curve from Bode plot tool. 

When the estimated model parameters are contained in the 

uncertainty bound with probability level 0.99, the amplitude 

curves lie above or low the red curve. From Figure 1, we see 

these three curves are very close and the red amplitude curve 

lies between two confidence amplitude curves with 

probability level 0.99. 

As using Matlab simulation tool to simulate the output 

response of Bode plot in closed loop, the phase plot is get 

with amplitude plot simultaneously. The confidence interval 

phase plot is given in Figure 3, and the red phase curve lies 

also between two confidence phase curves with the 

probability level 0.99. This is similar to the derivation of 

Figure 2. 

 

Figure 4. Comparing of the true model and its identified model. 

 

Figure 5. One bound of the model error. 

To verify the efficiency of the identified model  

and make sure that this identified model can be used to 

replace the true model, we compare the Bode responses 

through true model  and its identified model 

respectively in Figure 4. From Figure 4, we see that these 

two Bode response curves coincide with each other, it means 

that the model error  will converge to zero with time 

increases in Figure 5, then this model error can be neglected 

in our next process in designing controllers. 

6. Conclusion 

In this paper we analyze the model structure validation 

problem for closed loop condition from two aspects: (1) 

confidence region of model parameter, (2) one bound on the 

model error. 

This bound tells us that if one appropriate feedback 

controller is chosen, the model error will converge to zero. 

So this bound can guide us to design controllers with 

two-degrees of freedom. The next subject is to construct one 

virtual variable to reformulate this asymptotic variance 

matrix as one projection form of this virtual variable along 

some vector space. 
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